
The Electronic Journal of Mathematics and Technology, Volume 2, Number 2, ISSN 1933-2823 

  

 

Generalizing 2D Geometric Properties to 3D 

With the Aid of DGS 
 

 

Dohyun Kim, Korea Science Academy 

phy_kim@yahoo.com 

 

Seunguk Jang, Korea Science Academy 

910217j@hanmail.net 

 

Hyobin Lee, Korea Science Academy 
rifyodeng@naver.com 

 

Youngdae Kim, Korea Science Academy 

bigroadaz@hanmail.net 

 

Abstract 
In this paper, we would show how we could use computer programs in geometry researches. This paper contains 

the processes of generalizing the properties of 2D-geometry to that of 3D-geometry. In addition, we would show how we 

could generalize backward; we could generalize further on 2D-geometry using the properties we found in 3D-

geometry. In our research, we tried to generalize triangular properties into polygons and tetrahedrons. The computer 

tools we used are GSP and Cabri 3D. We used GSP for 2-dimensional researches and Cabri 3D for 3-dimensional 

researches. 

 

1. Introduction 
 

Everyone can study Geometry whenever he has some things to draw with and on, such as a 

sketch board. However, in this classical way of research, using these boards, one cannot assure the 

accuracy of his research. That is mainly because it is hard to draw a figure exactly. What is worse, it 

is even harder for 3-Dimensional figures. With a development of computer technology, drawing and 

visualizing these figures became much easier. This led the researchers to enhanced accuracy and 

efficiency in geometry studies. 

In this paper, we used GSP to study 2D Geometry and Cabri-3D to study 3D Geometry as DGS 

software. GSP is one of the most renowned computer tools around the world in studying 2D 

Geometry. However, Cabri-3D is not the one used frequently because it is not yet familiar to people 

around the world. 

This paper focused on giving examples of applying computer tools on geometry researches. 

Several topics we introduced were ones, which are really familiar and elementary. In chapter 2, we 

showed how we could generalize triangle centers to tetrahedrons. We described about 

generalizations of Menelaus’ theorem to polygons and polyhedrons, and about backward 

generalization, from polyhedrons to polygons in chapter 3. In chapter 4, we showed how we could 

find a property using dynamic methods of visualizing and performing experiments. We used a 

method of dynamic modeling using computer tools. We could precede our research very efficiently 

using computers. We performed our research following three steps: 

First, using GSP, we studied about the two-dimensional properties in detail. Then, we inferred 
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how it works on 2-dimensional planes. Also, we fully understood through performing a number of 

experiments using computer tools. 

Second, we tried to generalize 2D properties to 3D space. In this process, we used Cabri 3D. 

We could fully visualize and try a number of figures. It was very helpful for performing a research 

on them. Compared to the non-dynamic methods, it was much easier to study, analyze and visualize 

the figures. We hypothesized our results from the experiments. 

Third, through proving those found properties, we could check our conjectures we made before 

and then, we could explore the possibility of generalizing further. In addition, we could generalize 

backward. 

With the aid of DGS and dynamic modeling method, the research proceedings become more 

efficient. Performing a number of experiments, we could easily figure out how we can generalize 

the properties. With the ideas from experiments in 2D, we could apply those ideas easily on 3D. 

This really helped our flow of thoughts. Generalizing triangle centers, especially for orthocenters, 

we could perform a bulk of trials and found proper conditions they exist. Also in chapter 3, since 

Menelaus’ theorem is based on measurements of the line segments, we could calculate the results 

very effectively. If we had not those computer tools, we were not able to get results, because we 

have crucial difficulties on measuring distances on 3D. In addition, Fermat point in chapter 4 shows 

the method of trial/mistake approach. This is one of the best advantages of a research with computer 

tools. 

 

2. Triangle Centers 
 

1. Incenters, Excenters, Centroids and Circumcenters 
 

The definition of the incenter of a triangle is a center of triangle’s inscribing circle, and be 

constructed as a point where three angle bisectors intersect. For any points on the angle bisector is 

equidistant to the two sides. Therefore, the point where three angle bisectors intersect is equidistant 

to the three sides. This means that it can be the center of the incircle. 

 

 

 
[ Figure 2 - 1 ] An angle bisector and an interior-dihedral angle bisector plane 

 

 

We directly extended this concept into 3D space. If we construct interior-dihedral angle (=inner 

angle made by planar sides of tetrahedron) bisector plane, this plane consists of points which has 

same distance from two planar sides (of tetrahedron). There, we can find 6 interior-dihedral angles 

and drew six bisector planes for each angle. We deduced that the point would be equidistant to all 

facets of the tetrahedron if these six bisector planes intersect at a single point. Furthermore, this 
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point would be the center of inscribing sphere, or insphere. We drew some figures and found that 

these six planes intersect at a single point and it is the center of the insphere. 
 

 
[ Figure 2 - 2 ] The incenter of a tetrahedron 

 

Next, we proved that these 6 bisectors meet on a single point. Then we also proved that it is 

center of insphere. Not only for incenter, but also for circumcenter, centroid, and excenter, we had 

similar procedure. These 4 centers were easily generalized. For any tetrahedron, those 4 centers 

exist, and we succeeded to prove them. [ Table 2-1 ] is indicating where those other 3 centers are 

and their properties. 

 

[ Table 2 - 1 ] Other centers of tetrahedron 

Centers Position in 2D Geometry Position in 3D Geometry Property 

Circumcenter 

A point where three 

perpendicular bisectors 

intersect 

A point where perpendicular 

bisecting planes intersect 

Becomes the center of the 

circumcircle and the 

circumsphere, respectively 

Centroid 
A point where three 

medians intersect 

A point where median 

planes ( Planes with a edge 

and its opposite edge’s 

middle point ) intersect 

Divides the line which 

connects a point and the 

opposite planes’ centroid as 

2:1, 3:1 respectively 

Excenter 
A point where exterior 

angle bisectors intersect 

A point where exterior 

dihedral-bisecting planes 

intersect 

Becomes the center of the 

excircle and the exosphere, 

respectively 

    

 

    A sample of those five centers is performed in this file: ( Presented with Cabri3D, [1] ). 

 

2. Orthocenters 
 

The orthocenter of a triangle is a point where three altitudes intersect. Then, this time, we 

proceeded to the generalization directly. 

https://ejmt.mathandtech.org/Contents/v2n2p1/FiveCentersSample.cg3
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We generalized directly to 3D, and we defined the orthocenter as the point where the four 

altitudes of a tetrahedron intersect. We drew several figures. However, we soon found that the four 

altitudes for general tetrahedrons do not intersect each other. Then we started from a regular 

tetrahedron. For a right tetrahedron, the orthocenter existed. Using a dynamic modeling method, we 

checked if it could be generalized. ( The orthocenter of a right tetrahedron, presented with Cabri 3D, 

[2] ) 

 

 

 
[ Figure 2 - 3 ] (a) General tetrahedrons (b) A counter example of the conjecture (c) Orthocenter of a 

tetrahedron 

 

 

First, we moved a point vertically up and down, and the center existed. ( This work is presented 

with Cabri3D, [3] ) Then, we made a conjecture that the orthocenter exists when at least one facet is 

an equilateral triangle. However we found some counter examples, as shown in [ Figure 2-3(b) ]. 

( Presented with Cabri3D, [4] ) We precede our research to generalize this condition of equilateral 

triangle. Finally, through a number of experiments, we found the orthocenter of a tetrahedron exists 

when an altitude intersects with opposite plane’s orthocenter. With a set of experiments, we 

checked that the orthocenter exists under this condition. ( Presented with Cabri3D, [5] ) 

 

 

 
[ Figure 2 - 4 ] Generalization of Euler's line 

 

 

https://ejmt.mathandtech.org/Contents/v2n2p1/Orthocenter_RightTetrahedron.cg3
https://ejmt.mathandtech.org/Contents/v2n2p1/Orthocenter_FirstCon.cg3
https://ejmt.mathandtech.org/Contents/v2n2p1/Orthocenter_CounterExample.cg3
https://ejmt.mathandtech.org/Contents/v2n2p1/Orthocenter%20undercondition.cg3
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We proved that the four altitudes are concurrent on a point if at least one altitude intersects with 

the opposite plane’s orthocenter. Also, we proved that the four altitudes intersect with their opposite 

facet’s orthocenter if the orthocenter exists. 

 In addition, we’ve also shown that all orthotetrahedrons (=tetrahedrons with orthocenter) have 

circumcenter, centroid, and orthocenter to be collinear, as additional generalization of Euler’s line 

[ Figure 2-4 ]. ( Presented with Cabri3D, [6] ) 
 

 

3. Menelaus’ Theorem 
 

Menelaus, a famous Egyptian mathematician, discovered the following theorem. This is 

what we will discuss in this whole chapter, and discuss about so-called “backward generalization”. 

 

Theorem(Menelaus) Given triangle ABC and a line l that never passes neither A nor B nor C, let 

D, E, F as intersection point between line l and line BC, CA, AB, respectively. Then, 

1=
FB

AF

EA

CE

DC

BD
 

 

The proof is introduced in [Kay01], pp.320 and shall be omitted. To generalize it into polygon, 

we observed the equation, 1=
FB

AF

EA

CE

DC

BD
, and found that: 

 

 

 

[ Figure 3 - 1 ] Observing the pattern 

 

 

That is, the vertices of triangle on the equation forms a “cycle”; namely, B-C-A. Keeping 

track of these points on triangle, we can see that it forms a cyclic curve. Also, between the points on 

cycle, we see that intersection point is placed on it (eg. Between B and C, there’s D; hence 

corresponding ratio is BD/DC). 
 

1. Generalization to Polygons 
 

By the observation done at the prior, we could conjecture that if we take circular track of 

polygon to multiply ratios of internal division by a fixed line, then we can get 1 as we did on 

triangle. To check it so, we’ve drawn [ Figure 3-2 ]. To be specific, we state this theorem as 

following: 

 

https://ejmt.mathandtech.org/Contents/v2n2p1/Euler_Final.cg3
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[ Figure 3 - 2 ] Observation for generalization 

 

 

 At left side of [ Figure 3-2 ], we noted that a an equation holds for quadrilaterals, namely1 
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To extend it so, we added auxiliary triangle, one side “stuck” on former quadrilateral – see the right 

side of [ Figure 3-2 ]. In this diagram, we observed that: 
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It is a similar equation that is held in (general) pentagon. Employing this “recursive” or “inductive” 

idea, we found a general rule that holds for a n-gon. That is, given n-gon P1P2…Pn, and fixed line l 

(that never passes Pi), letting Qi be intersecting point between line l and line PiPi+1, for i=1, 2, …, n 

(define Pn+1 as P1.), then we have: 
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    This equation is employed as our generalization of Menelaus’ Theorem at polygons. 

 

2. Generalization to 3D 
 

     The idea of "cycle" takes central role in discovery of tetrahedral Menelaus' theorem. Though, 

Euler's contribution on graph theory tells us that we can't just loop through all edges for only once. 

Thus we can conclude that a full circular track can't be constructed on tetrahedrons. Though, when 

we just kept the idea of "closed loop" ONLY for tetrahedral generalization, we could obtain a result. 

 

1 In [ Figure 3-2 ], P1, P2, P3, P4 all denotes vertices of yellow(big) quadrilateral. There’s line j passing through 

quadrilateral P1P2P3P4, and Q1, Q2, Q3, Q4` is intersection of line j with P1P2, P2P3, P3P4, P4P1 respectively. P5 is 

auxiliary point added and Q5, Q4 denotes intersection of line j with P5P1, P4P5, respectively. 
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     Suppose, for a tetrahedron ABCD, let P1P2…PnPn+1 be closed loop on that tetrahedron (so that 

Pn+1=P1, Pi’s are either A, B, C, or D, and Pi≠Pi+1). Given plane π that never passes A, B, C, nor D, 

let Qi,i+1 be intersecting point between π and line PiPi+1. 

     Further, let hi is height from Pi to π. Accompanying [ Figure 3-3 ] (b), we can see that triangle 

PiHiQi,i+1 and Pi+1Hi+1Qi,i+1 is similar and PiHi = hi, Pi+1Hi+1 = hi+1 and, 111,1, // ++++ = iiiiiiii hhPQQP
 

in conclusion. If we multiply this equation through i=1 to n, we obtain: 
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[ Figure 3 - 3 ] (a) Menelaus' theorem for tetrahedrons (b) Height diagram 

 

(Presented with Cabri3D: Multiple-loop on tetrahedrons, [7]) 

(Presented with Cabri3D: Circuit-concept generalization on 3D, [8]) 

 This equation is what we will now say Menelaus’ theorem for tetrahedrons. Although 

nowadays one can check this numerically with Cabri 3D but when we tried to observe this fact, 

Cabri 3D didn’t provided numerical calculation and therefore all we could do was finding an 

approach to proof. 

 

3. Backward Generalization 
 

 

[ Figure 3 - 4 ] Result of Backward-generalization 

https://ejmt.mathandtech.org/Contents/v2n2p1/Menelaus_Multipleloop.cg3
https://ejmt.mathandtech.org/Contents/v2n2p1/Menelaus_3D.cg3
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Note that Theorem 3.3 has alike equation but the points stated are not as the same situation 

as the points stated in Theorem 3.2. In Theorem 3.2, the point Pi’s are aligned all vertices of 

polygon, but in Theorem 3.3, the point Pi’s are aligned not all vertices on tetrahedron and therefore 

can be redundant. Though, cancellation of height is achieved by similarity of right triangles and 

therefore can be achieved in planar geometry and planar loop of vertices as well. This achieved our 

backward-generalization, and stated as following [ Figure 3-4 ]: 

Think of a graph (diagram with points and segments, on Euclidean metric) K on a plane 

and a line ℓ (on the same plane) such that it never passes points of K. Think of cycle (=path that has 

same starting point and endpoint) P1P2…PnPn+1 on K, and suppose line PiPi+1 meets with ℓ at Qi,i+1. 

Then, 
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4. Fermat Point 
 

This chapter will discuss about advanced picturesque (or “colorful”) method for quantity 

analysis that we will now say quantity picturing, using GSP. This method is for 2D geometric 

quantity analysis, or, to be specific, for max-min point analysis. Before we go on, we will first give 

formal definition of “quantity” that we will use so far. 

Suppose we have subset D (usually constructed geometrically) of . We may consider a 

(continuous) map  that we will call (continuous) quantity map and the real number 

 will be called quantity at point P. Now to say how this concept is established in GSP, we just 

pick any point P from D, and take some measurements among these points (static points may be 

included during this procedure), and calculate these measurements to gain a quantity at P, and this 

generates quantity map from D also. 

What we can do with GSP about the quantity is that they produce “coloring” figures – like 

points, lines or their segments, polygon areas, etc. – as the function of (given) quantity, or 

controlling quantity. Furthermore, if we trace a figure with varying color, it leaves its former color 

in their former positions (and therefore traces are static unless it’s drawn once again). To implement 

it so, the detailed procedure is stated below [ Figure 4-1 ]. 
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[ Figure 4 - 1 ] Specific procedure of color conventional method 

 

 

 

Step 1 – Draw a figure whatever you want to investigate. [(a)] 

Step 2 – Give a quantity that you want to set as the controlling quantity. [(b)] 

Step 3 – Select color-varying object and controlling quantity. [(c)] 

Step 4 – Keeping the selection, go to View → Color → Varying color menu. [(d)] 

Step 5 – Set the maximum, minimum value of repeating interval; be sure to notice what can be 

the maximum value and minimum value of controlling quantity in your figure. Set patterns of 

repeating if required. [(d)] 

Step 6 – Now see how your varying-color object changes its aspect. If you need tracing it, you 

can turn on its tracing mode and see varying-color trace also. [(e),(f)] 

 

Although example in [ Figure 4-1 ] is giving traces of line segment, some specific cases that 

we usually deal with will trace a point P in domain D. Yet, this will be done by tracing the curve 

trace of point P in D, instead of point P itself – details will be depicted later. Whatever the method 

will be, this kind of traces throughout D will be called quantity variation trace. See [ Figure 4-2 ] 

for example, which has 2 traces for the same quantity map f : D = Inferior of 

, and all of our varying-color traces will be assumed as a quantity 

variation traces from now on. 

The most delicate part of this method is Step 5, setting repeating interval. The appropriate 

settings of this will enhance analysis of quantity variation trace of provided quantity map. If one 

sets repeating interval very similar to the same as range of quantity map, then one will see a single 

color band, or a single spectrum, from the point of minimum to the point of maximum. This kind of 

band is useful to see where the minimum or maximum value of quantity roughly exists, and to what 

direction is quantity rising; closely related with the concept of gradient as well. See the left side of 

[ Figure 4-2 ] – one would find out that BP+CP+DP will have its minimum value somewhere in the 

middle of the triangle, and it increases as P moves to the boundary of triangle. 
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[ Figure 4 - 2 ] Comparison between single color band & multiple color bands 

 

For approximating quantities or figuring out more precisely where critical point exists, we 

should set repeating interval fairly small. If so, we find that variance of quantity may be shown as 

multiple color bands, that is, we may see multiple spectra of colors throughout the domain [ Figure 

4-2, right side ]. The advantage of this is that we can resolute spectra more clearly. If continuity is 

assumed, then one can estimate which color band will represent which value of quantity, and 

moreover, one can figure out at which point will quantity map has its extreme values more clearly 

relative to single color band. 

 

In the rest of this chapter, we will give an example of using quantity variation trace in 

geometric foundations. To be specific, we will apply it to search of Fermat’s point, or, finding a 

point F that minimizes AF+BF+CF, for given . There, all we have to do is examining a 

quantity variation trace, with quantity at P as AP+BP+CP and domain as . 

But there’s one thing that we should be aware of; quantity picturing is bit hard to find 

critical point exactly from traces. This trace is no more than relying on person’s sight, so our best 

information about the critical point from traces is that the point exists possibly around 

somewhere(=critical site), and this information is usually valid for continuous quantity only. 

Therefore, using traces to find critical points should be no more than auxiliary tool of 

theorical construction of critical points of continuous quantities. Fortunately, for a planary point P, 

we have AP+BP+CP as continuous quantity, and for A, B, C satisfying certain conditions, we can 

geometrically construct critical point P inside . So, we used traces to check validity of this 

geometrically constructed Fermat’s point as an application, and at the end, we succeeded.  

 

 

[ Figure 4 - 3 ] Method for sweeping all points in triangle 

 

There’re two problems that we have to solve to do such works: 

1.  How we can check all points in  for tracing? 
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2.  How we can solve problem 1 efficiently?  

These 2 problems can be solved all at once using trace for coloring. The steps are described 

as following: 

First, give 2 arbitrary point, say Arb1 and Arb2, on segment AB and BC, respectively. 

Second, give a parallel line by BC through Arb1, and link A with Arb2. The two lines designed will 

intersect at point P, and calculate AP+BP+CP and vary color of P respect to AP+BP+CP. One can 

ensure that if point Arb1 and Arb2 move totally randomly on their domain, point P will roam almost 

every point in triangle ABC. 

However, AP+BP+CP will not be traced by point P itself; it'll be traced by the curve (or 

linear) trace of P respect to point Arb2 (or possibly Arb1, if you prefer so – we will note this as 

“tracing by trace.”)[ Figure 4-3 ]. That is, we’re handling every point in triangle ABC by “tracing 

trace” of P. To do so, select point P and Arb2 with segment BC to generate P’s trace by pt. Arb2. 

One can figure out easy that color is really varying inside the trace of point P, and this color(s) 

remain if we trace that trace (Italic trace refers to trace of P itself, and was to avoid ambiguity with 

other trace). 
 

 

[ Figure 4 - 4 ] Fermat's point & color band of quantity AP+BP+CP 

( Presented with GSketchpad, [9] ) 
 

Traced result of [ Figure 4-3 ](P’s trace) is shown as [ Figure 4-4 ], with repeating interval (0, 0.5). 

We indicated in [ Figure 4-4 ] as “Here” for geometrically constructed Fermat’s point. Note 

the area around point “Here” we can see that color bands are becoming bigger respect to their sizes, 

which is the important aspect of critical site. Therefore, we can see that [ Figure 4-4 ] successfully 

gives validity of constructed Fermat’s point. Moreover, although we won’t discuss about the details, 

this method can be generalized for checking answers of general geometric optimization problems. 

 

5. Conclusion 

 
In summary, this paper contains generalizations of some triangle centers to tetrahedrons, 

and Menelaus' theorem, which introduced backward generalizations from 3D to 2D, and shows the 

process of finding Fermat point of a triangle, all done by some students who are used to usage of 

DGS. In some sense, our job was to make specific example of role of DGS as geometric knowledge 

producing by self-led way (for students). 

https://ejmt.mathandtech.org/Contents/v2n2p1/FermatPtsEx.gsp
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  Hence what we ultimately proposed in this paper is giving a specific example that shows 

how computer technique can help an extension of thought. For the example, we chose 

generalization of 2D-geometric property into 3D-geometric property. First, we chose geometry 

because it consists of studying our everyday figure, and, second, we chose generalization because 

it's simplest extensive thought upon the knowledge. The approach we used was dynamic modeling 

method using DGS. This way of study was very efficient and effective in research. We provided 

three example sub-studies using this method. In chapter 2, we provided an example of extending 

ideas directly from 2D to 3D. In addition, chapter 3 includes the capability of measuring in 3D, 

which can be impossible if we didn’t use Cabri 3D. Also in chapter 4, we showed trial/mistake 

method of research and optimizing the tools in studying. 

 For decades, computer became one of the most important tools in human’s daily lives. This 

means computers are interacting with people. As shown in this research, we showed it in this paper 

that this method is very efficient in studying mathematics. Through this study, we look forward to 

the future computer tools, both CAS and DGS, significantly interact with researchers and help their 

studies. 
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